An iterative regulatory process for robot governance

As technology advances rapidly, the gap between the speed of policy development and technological change is becoming more prominent. This is particularly true in robotics, where current legislation often lags behind and fails to adequately frame robot technologies. This gap increases legal uncertainty and poses safety risks, as developers may not know which regulatory frameworks to follow. The resulting technology may thus perform poorly and lead to biases and discrimination.

New material provides breakthrough in ‘softbotics’

Carnegie Mellon University engineers have developed a soft material with metal-like conductivity and self-healing properties that is the first to maintain enough electrical adhesion to support digital electronics and motors. This advance, published in Nature Electronics, marks a breakthrough in softbotics and the fields of robotics, electronics, and medicine.

A fairy-like robot flies by the power of wind and light

The development of stimuli-responsive polymers has brought about a wealth of material-related opportunities for next-generation small-scale, wirelessly controlled soft-bodied robots. For some time now, engineers have known how to use these materials to make small robots that can walk, swim and jump. So far, no one has been able to make them fly.