Should robot artists be given copyright protection?

When a group of museums and researchers in the Netherlands unveiled a portrait entitled The Next Rembrandt, it was something of a tease to the art world. It wasn't a long lost painting but a new artwork generated by a computer that had analysed thousands of works by the 17th-century Dutch artist Rembrandt Harmenszoon van Rijn.

Shedding light on how humans walk… with robots

Learning how to walk is difficult for toddlers to master; it's even harder for adults who are recovering from a stroke, traumatic brain injury, or other condition, requiring months of intensive, often frustrating physical therapy. With the recent boom of the robotic exoskeleton industry, more and more patients are being strapped into machines that apply forces to their legs as they walk, gently prodding them to modify their movements by lengthening their strides, straightening their hips, and bending their knees. But, are all patients benefiting from this kind of treatment? A group of scientists led by Paolo Bonato, Ph.D., Associate Faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Director of the Motion Analysis Laboratory at Spaulding Rehabilitation Hospital, has discovered a crucial caveat for rehabilitative exoskeletons: humans whose lower limbs are fastened to a typical clinical robot only modify their gait if the forces the robot applies threaten their walking stability.

Researchers create robotic cheetah

University of Twente researcher Geert Folkertsma has developed a prototype cheetah robot. Folkertsma has dedicated four years of research and development to constructing a scaled-down robotic version of the fastest land animal in the world, with a view to replicating its movements. Relatively speaking, the robot moves using only about fifteen percent more energy than a real cheetah. Folkertsma's doctoral defence of this unique project will take place on 21 April 2017 at the University of Twente.