Programmable soft actuators show potential of soft robotics at TU Delft

Researchers at the Delft University of Technology in the Netherlands have developed highly programmable soft actuators that, similar to the human hand, combine soft and hard materials to perform complex movements. These materials have great potential for soft robots that can safely and effectively interact with humans and other delicate objects, said the TU Delft scientists.

“Robots are usually big and heavy. But you also want robots that can act delicately, for instance, when handling soft tissue inside the human body. The field that studies this issue, soft robotics, is now really taking off,” said Prof. Amir Zadpoor, who supervised the research presented the July 8 issue of Materials Horizons.

“What you really want is something resembling the features of the human hand including soft touch, quick yet accurate movements, and power,” he said. “And that’s what our soft 3D-printed programmable materials strive to achieve.”

Tunability

Owing to their soft touch, soft robotics can safely and effectively interact with humans and other delicate objects. Soft programmable mechanisms are required to power this new generation of robots. Flexible mechanical metamaterials, working on the basis of mechanical instability, offer unprecedented functionalities programmed into their architected fabric that make them potentially very promising as soft mechanisms, said the TU Delft researchers.

“However, the tunability of the mechanical metamaterials proposed so far have been very limited,” said first author Shahram Janbaz.

Programmable soft actuators

“We now present some new designs of ultra-programmable mechanical metamaterials, where not only the actuation force and amplitude, but also the actuation mode could be selected and tuned within a very wide range,” explained Janbaz. “We also demonstrate some examples of how these soft actuators could be used in robotics, for instance as a force switch, kinematic controllers, and a pick-and-place end-effector.”

Soft actuators from TU Delft

A conventional robotic arm is modified using the developed soft actuators to provide soft touch during pick-and-place tasks. Source: TU Delft

Buckling

“The function is already incorporated in the material,” Zadpoor explained. “Therefore, we had to look deeper at the phenomenon of buckling. This was once considered the epitome of design failure, but has been harnessed during the last few years to develop mechanical metamaterials with advanced functionalities.”

“Soft robotics in general and soft actuators in particular could greatly benefit from such designer materials,” he added. “Unlocking the great potential of buckling-driven materials is, however, contingent on resolving the main limitation of the designs presented to date, namely the limited range of their programmability. We were able to calculate and predict higher modes of buckling and make the material predisposed to these higher modes.”

3D printing

“So, we present multi-material buckling-driven metamaterials with high levels of programmability,” said Janbaz. “We combined rational design approaches based on predictive computational models with advanced multi-material additive manufacturing techniques to 3D print cellular materials with arbitrary distributions of soft and hard materials in the central and corner parts of their unit cells.”

“Using the geometry and spatial distribution of material properties as the main design parameters, we developed soft mechanical metamaterials behaving as mechanisms whose actuation force and actuation amplitude could be adjusted,” he said.

Editor’s note: This article republished from TU Delft.

The post Programmable soft actuators show potential of soft robotics at TU Delft appeared first on The Robot Report.

KIST researchers teach robot to trap a ball without coding

KIST teaching

KIST’s research shows that robots can be intuitively taught to be flexible by humans rather than through numerical calculation or programming the robot’s movements. Credit: KIST

The Center for Intelligent & Interactive Robotics at the Korea Institute of Science and Technology, or KIST, said that a team led by Dr. Kee-hoon Kim has developed a way of teaching “impedance-controlled robots” through human demonstrations. It uses surface electromyograms of muscles and succeeded in teaching a robot to trap a dropped ball like a soccer player.

A surface electromyogram (sEMG) is an electric signal produced during muscle activation that can be picked up on the surface of the skin, said KIST, which is led by Pres. Byung-gwon Lee.

Recently developed impedance-controlled robots have opened up a new era of robotics based on the natural elasticity of human muscles and joints, which conventional rigid robots lack. Robots with flexible joints are expected to be able to run, jump hurdles and play sports like humans. However, the technology required to teach such robots to move in this manner has been unavailable until recently.

KIST uses human muscle signals to teach robots how to move

The KIST research team claimed to be the first in the world to develop a way of teaching new movements to impedance-controlled robots using human muscle signals. With this technology, which detects not only human movements but also muscle contractions through sEMG, it’s possible for robots to imitate movements based on human demonstrations.

Dr. Kee-hoon Kim’s team said it succeeded in using sEMG to teach a robot to quickly and adroitly trap a rapidly falling ball before it comes into contact with a solid surface or bounces too far to reach — similar to the skills employed by soccer players.

SEMG sensors were attached to a man’s arm, allowing him to simultaneously control the location and flexibility of the robot’s rapid upward and downward movements. The man then “taught” the robot how to trap a rapidly falling ball by giving a personal demonstration. After learning the movement, the robot was able to skillfully trap a dropped ball without any external assistance.

KIST movements

sEMG sensors attached to a man’s arm, allowed him to control the location and flexibility of a robot’s rapid movements. Source: KIST

This research outcome, which shows that robots can be intuitively taught to be flexible by humans, has attracted much attention, as it was not accomplished through numerical calculation or programming of the robot’s movements. This study is expected to help advance the study of interactions between humans and robots, bringing us one step closer to a world in which robots are an integral part of our daily lives.

Kim said, “The outcome of this research, which focuses on teaching human skills to robots, is an important achievement in the study of interactions between humans and robots.”

Elephant Robotics’ Catbot designed to be a smaller, easier to use cobot


Small and midsize enterprises are just beginning to benefit from collaborative robot arms or cobots, which are intended to be safer and easier to use than their industrial cousins. However, high costs and the difficulty of customization are still barriers to adoption. Elephant Robotics this week announced its Catbot, which it described as an “all in one safe robotic assistant.”

The cobot has six degrees of freedom, has a 600mm (23.6 in.) reach, and weighs 18kg (39.68 lb.). It has a payload capacity of 5kg (11 lb.). Elephant Robotics tested Catbot in accordance with international safety standards EN ISO 13848:2008 PL d and 10218-1: 2011-Clause 5.4.3 for human-machine interaction. A teach pendant and a power box are optional with Catbot.

Elephant Robotics CEO Joey Song studied in Australia. Upon returning home, he said, he “wanted to create a smaller in size robot that will be safe to operate and easy to program for any business owner with just a few keystrokes.”

Song founded Elephant Robotics in 2016 in Shenzhen, China, also known as “the Silicon Valley of Asia.” It joined the HAX incubator and received seed funding from Princeton, N.J.-based venture capital firm SOSV.

Song stated that he is committed in making human-robot collaboration accessible to any small business by eliminating the limitations of high price or requirements for highly skilled programming. Elephant Robotics also makes the Elephant and Panda series cobots for precise industrial automation.

Catbot includes voice controls

Repetitive tasks can lead to boredom, accidents, and poor productivity and quality, noted Elephant Robotics. Its cobots are intended to free human workers to be more creative. The company added that Catbot can save on costs and increase workloads.

Controlling robots, even collaborative robots, can be difficult. This is even harder for robots that need to be precise and safe. Elephant Robotics cited Facebook’s new PyRobot framework as an example of efforts to simplify robotic commands.

Catbot is built on an open platform so developers can share the skills they’ve developed, allowing others to use them or build on top of them.

Elephant Robotics claimed that it has made Catbot smarter and safer than other collaborative robots, offering “high efficiency and flexibility to various industries.” It includes force sensing and voice-command functions.

In addition, Catbot has an “all-in-one” design, cloud-based programming, and quick tool changing.

The catStore virtual shop offers a set of 20 basic skills. Elephant Robotics said that new skills could be developed for specific businesses, and they can be shared with other users on its open platform.

Elephant Robotics' Catbot designed to be a smaller, easier to use cobot

Catbot is designed to provide automated assistance to people in a variety of SMEs. Source: Elephant Robotics

Application areas

Elephant Robotics said its cobots are suitable for assembly, packaging, pick-and-place, and testing tasks, among others. Its arms work with a variety of end effectors. To increase its flexibility, the company said, Catbot is designed to be easy to program, from high-precision tasks to covering “hefty ground projects.”

According to Elephant Robotics, the Catbot can used for painting, photography, and giving massages. It could also be a personal barista or play with humans in a table game. In addition, Catbot could act as a helping hand in research workshops or as an automatic screwdriver, said the company.

Elephant Robotics’ site said it serves the agricultural and food, automotive, consumer electronics, educational and research, household device, and machining markets.

Catbot is available now for preorder, with deliveries set to start in August 2019. Contact Elephant Robotics for more information on price or tech specifications at sales@elephantrobotics.com.

AMP Robotics announces largest deployment of AI-guided recycling robots

AMP Robotics announces largest deployment of AI-guided recycling robots

AMP robotics deployment at SSR in Florida. Source: Business Wire

DENVER — AMP Robotics Corp., a pioneer in artificial intelligence and robotics for the recycling industry, today announced the further expansion of AI guided robots for recycling municipal solid waste at Single Stream Recyclers LLC. This follows Single Stream Recyclers’ recent unveiling of its first installation of AMP systems at its state-of-the-art material recovery facility in Florida, the first of its kind in the state.

Single Stream Recyclers (SSR) currently operates six AMP Cortex single-robot systems at its 100,000 square-foot facility in Sarasota. The latest deployment will add another four AMP Cortex dual-robot systems (DRS), bringing the total deployment to 14 robots. The AMP Cortex DRS uses two high-speed precision robots that sort, pick, and place materials. The robots are installed on a number of different sorting lines throughout the facility and will process plastics, cartons, paper, cardboard, metals, and other materials.

“Robots are the future of the recycling industry,” said John Hansen co-owner of SSR. “Our investment with AMP is vital to our goal of creating the most efficient recycling operation possible, while producing the highest value commodities for resale.”

“AMP’s robots are highly reliable and can consistently pick 70-80 items a minute as needed, twice as fast as humanly possible and with greater accuracy,” added Eric Konik co-owner of SSR. “This will help us lower cost, remove contamination, increase the purity of our commodity bales, divert waste from the landfill, and increase overall recycling rates.”

AMP Neuron AI guides materials sorting

The AMP Cortex robots are guided by the AMP Neuron AI platform to perform tasks. AMP Neuron applies computer vision and machine learning to recognize different colors, textures, shapes, sizes, and patterns to identify material characteristics.

Exact down to what brand a package is, the system transforms millions of images into data, directing the robots to pick and place targeted material for recycling. The AI platform digitizes the material stream, capturing data on what goes in and out, so informed decisions can be made about operations.

“SSR has built a world-class facility that sets the bar for modern recycling. John, Eric and their team are at the forefront of their industry and we are grateful to be a part of their plans,” said Matanya Horowitz, CEO of AMP Robotics. “SSR represents the most comprehensive application of AI and robotics in the recycling industry, a major milestone not only for us, but for the advancement of the circular economy.”

The new systems will be installed this summer. Upon completion, AMP’s installation at SSR is believed to be the single largest application of AI guided robots for recycling in the United States and likely the world. In addition to Florida, AMP has installations at numerous facilities across the country including California, Colorado, Indiana, Minnesota, and Wisconsin; with many more planned. Earlier this spring, AMP expanded globally by partnering with Ryohshin Ltd. to bring robotic recycling to Japan.

About AMP Robotics

AMP Robotics is transforming the economics of recycling with AI-guided robots. The company’s high-performance industrial robotics system, AMP Cortex, precisely automates the identification, sorting, and processing of material streams to extract maximum value for businesses that recycle municipal solid waste, e-waste and construction and demolition.

The AMP Neuron AI platform operates AMP Cortex using advanced computer vision and machine learning to continuously train itself by processing millions of material images within an ever-expanding neural network that experientially adapts to changes in a facility’s material stream.

About Single Stream Recyclers

Single Stream Recyclers is a materials recovery facility in Sarasota, Fla. It processes, materials from all over the west coast of Florida. The facility sorts, bales and ships aluminum, cardboard, food and beverage cartons, glass, paper, plastics, metal and other recyclables from residential curbside and commercial recycling collection. SSR is heavily invested in technology to help create the best possible end products and reduce contamination as well as residue.

Kollmorgen to present advanced motion control for commercial robots at Robotics Summit & Expo

Kollmorgen will exhibit its newest motion-centric automation solutions for designers and manufacturers of commercial robots and intelligent systems at the Robotics Summit & Expo 2019. Visitors are invited to Booth 202 to see and participate in a variety of product exhibits and exciting live demos.

Demos and other exhibits have been designed to show how Kollmorgen’s next-generation technology helps robot designers and manufacturers increase efficiency, uptime, throughput, and machine life.

Demonstrations

The AKM2G Servo Motor delivers the best power and torque density on the market, offering OEMs a way to increase performance and speed while cutting power consumption and costs. Highly configurable, with six frame sizes with up to five stack lengths, and a variety of selectable options (such as feedback, mounting, and performance capabilities), the AKM2G can easily be dropped into existing designs.

Robotic Gearmotor Demo: Discover how Kollmorgen’s award-winning frameless motor solutions integrate seamlessly with strain wave gears, feedback devices, and servo drives to form a lightweight and compact robotic joint solution. Kollmorgen’s standard and custom frameless motor solutions enable smaller, lighter, and faster robots.

AGVs and Mobile Robots: Show attendees can learn about Kollmorgen’s flexible, scalable vehicle control solutions for material handling for smart factories and warehouses with AGVs and mobile robots.

Panel discussion

Kollmorgen's Tom Wood will speak at the Robotics Summit & Expo

Tom Wood, Kollmorgen

Tom Wood, frameless motor product specialist at Kollmorgen, will participate in a session at 3:00 p.m. on Wednesday, June 5, in the “Technology, Tools, and Platforms” track at the Robotics Summit & Expo. He will be part of a panel on “Motion Control and Robotics Opportunities,” which will discuss new and improved technologies. The panel will examine how these motion-control technologies are leading to new robotics capabilities, new applications, and entry into new markets.

Register now for the Robotics Summit & Expo, which will be at Boston’s Seaport World Trade Center on June 5-6.

About Kollmorgen

Since its founding in 1916, Kollmorgen’s innovative solutions have brought big ideas to life, kept the world safer, and improved peoples’ lives. Today, its world-class knowledge of motion systems and components, industry-leading quality, and deep expertise in linking and integrating standard and custom products continually delivers breakthrough motion solutions that are unmatched in performance, reliability, and ease of use. This gives machine builders around the world an irrefutable marketplace advantage and provides their customers with ultimate peace of mind.

For more information about Kollmorgen technologies, please visit www.kollmorgen.com or call 1-540-633-3545.

Stanford Doggo robot acrobatically traverses tough terrain

Putting their own twist on robots that amble through complicated landscapes, the Stanford Student Robotics club’s Extreme Mobility team at Stanford University has developed a four-legged robot that is not only capable of performing acrobatic tricks and traversing challenging terrain, but is also designed with reproducibility in mind. Anyone who wants their own version of the robot, dubbed Stanford Doggo, can consult comprehensive plans, code and a supply list that the students have made freely available online.

“We had seen these other quadruped robots used in research, but they weren’t something that you could bring into your own lab and use for your own projects,” said Nathan Kau, ’20, a mechanical engineering major and lead for Extreme Mobility. “We wanted Stanford Doggo to be this open source robot that you could build yourself on a relatively small budget.”

Whereas other similar robots can cost tens or hundreds of thousands of dollars and require customized parts, the Extreme Mobility students estimate the cost of Stanford Doggo at less than $3,000 — including manufacturing and shipping costs. Nearly all the components can be bought as-is online. The Stanford students said they hope the accessibility of these resources inspires a community of Stanford Doggo makers and researchers who develop innovative and meaningful spinoffs from their work.

Stanford Doggo can already walk, trot, dance, hop, jump, and perform the occasional backflip. The students are working on a larger version of their creation — which is currently about the size of a beagle — but they will take a short break to present Stanford Doggo at the International Conference on Robotics and Automation (ICRA) on May 21 in Montreal.

Robotics Summit & Expo 2019 logoKeynotes | Speakers | Exhibitors | Register

A hop, a jump and a backflip

In order to make Stanford Doggo replicable, the students built it from scratch. This meant spending a lot of time researching easily attainable supplies and testing each part as they made it, without relying on simulations.

“It’s been about two years since we first had the idea to make a quadruped. We’ve definitely made several prototypes before we actually started working on this iteration of the dog,” said Natalie Ferrante, Class of 2019, a mechanical engineering co-terminal student and Extreme Mobility Team member. “It was very exciting the first time we got him to walk.”

Stanford Doggo’s first steps were admittedly toddling, but now the robot can maintain a consistent gait and desired trajectory, even as it encounters different terrains. It does this with the help of motors that sense external forces on the robot and determine how much force and torque each leg should apply in response. These motors recompute at 8,000 times a second and are essential to the robot’s signature dance: a bouncy boogie that hides the fact that it has no springs.

Instead, the motors act like a system of virtual springs, smoothly but perkily rebounding the robot into proper form whenever they sense it’s out of position.

Among the skills and tricks the team added to the robot’s repertoire, the students were exceptionally surprised at its jumping prowess. Running Stanford Doggo through its paces one (very) early morning in the lab, the team realized it was effortlessly popping up 2 feet in the air. By pushing the limits of the robot’s software, Stanford Doggo was able to jump 3, then 3½ feet off the ground.

“This was when we realized that the robot was, in some respects, higher performing than other quadruped robots used in research, even though it was really low cost,” recalled Kau.

Since then, the students have taught Stanford Doggo to do a backflip – but always on padding to allow for rapid trial and error experimentation.

Stanford Doggo robot acrobatically traverses tough terrain

Stanford students have developed Doggo, a relatively low-cost four-legged robot that can trot, jump and flip. (Image credit: Kurt Hickman)

What will Stanford Doggo do next?

If these students have it their way, the future of Stanford Doggo in the hands of the masses.

“We’re hoping to provide a baseline system that anyone could build,” said Patrick Slade, graduate student in aeronautics and astronautics and mentor for Extreme Mobility. “Say, for example, you wanted to work on search and rescue; you could outfit it with sensors and write code on top of ours that would let it climb rock piles or excavate through caves. Or maybe it’s picking up stuff with an arm or carrying a package.”

That’s not to say they aren’t continuing their own work. Extreme Mobility is collaborating with the Robotic Exploration Lab of Zachary Manchester, assistant professor of aeronautics and astronautics at Stanford, to test new control systems on a second Stanford Doggo. The team has also finished constructing a robot twice the size of Stanford Doggo that can carry about 6 kilograms of equipment. Its name is Stanford Woofer.

Note: This article is republished from the Stanford University News Service.

Hank robot from Cambridge Consultants offers sensitive grip to industrial challenges

Robotics developers have taken a variety of approaches to try to equal human dexterity. Cambridge Consultants today unveiled Hank, a robot with flexible robotic fingers inspired by the human hand. Hank uses a pioneering sensory system embedded in its pneumatic fingers, providing a sophisticated sense of touch and slip. It is intended to emulate the human ability to hold and grip delicate objects using just the right amount of pressure.

Cambridge Consultants stated that Hank could have valuable applications in agriculture and warehouse automation, where the ability to pick small, irregular, and delicate items has been a “grand challenge” for those industries.

Picking under pressure

While warehouse automation has taken great strides in the past decade, today’s robots cannot emulate human dexterity at the point of picking diverse individual items from larger containers, said Cambridge Consultants. E‑commerce giants are under pressure to deliver more quickly and at a cheaper price, but still require human operators for tasks that can be both difficult and tedious.

“The logistics industry relies heavily on human labor to perform warehouse picking and packing and has to deal with issues of staff retention and shortages,” said Bruce Ackman, logistics commercial lead at Cambridge Consultants. “Automation of this part of the logistics chain lags behind the large-scale automation seen elsewhere.”

By giving a robot additional human-like senses, it can feel and orient its grip around an object, applying just enough force, while being able to adjust or abandon if the object slips. Other robots with articulated arms used in warehouse automation tend to require complex grasping algorithms, costly sensing devices, and vision sensors to accurately position the end effector (fingers) and grasp an object.

Robotics Summit & Expo 2019 logoKeynotes | Speakers | Exhibitors | Register

Hank uses sensors for a soft touch

Hank uses soft robotic fingers controlled by airflows that can flex the finger and apply force. The fingers are controlled individually in response to the touch sensors. This means that the end effector does not require millimeter-accurate positioning to grasp an object. Like human fingers, they close until they “feel” the object, said Cambridge Consultants.

With the ability to locate an object, adjust overall system position and then to grasp that object, Hank can apply increased force if a slip is detected and generate instant awareness of a mishandled pick if the object is dropped.

Cambridge Consultants claimed that Hank moves a step beyond legacy approaches to this challenge, which tend to rely on pinchers and suction appendages to grasp items, limiting the number and type of objects they can pick and pack.

“Hank’s world-leading sensory system is a game changer for the logistics industry, making actions such as robotic bin picking and end-to-end automated order fulfillment possible,” said Ackman. “Adding a sense of touch and slip, generated by a single, low-cost sensor, means that Hank’s fingers could bring new efficiencies to giant distribution centers.”

Molded from silicone, Hank’s fingers are hollow and its novel sensors are embedded during molding, with an air chamber running up the center. The finger surface is flexible, food-safe, and cleanable. As a low-cost consumable, the fingers can simply be replaced if they become damaged or worn.

With offices in Cambridge in the U.K.; Boston, Mass.; and Singapore, Cambridge Consultants develops breakthrough products, creates and licenses intellectual property, and provides business and technology consulting services for clients worldwide. It is part of Altran, a global leader in engineering and research and development services. For more than 35 years, Altran has provided design expertise in the automotive, aerospace, defense, industrial, and electronics sectors, among others.

Waypoint Robotics provides mobile manipulation platform to MassTLC 5G Robotics Challenge

CAMBRIDGE, Mass. — To support winners of MassTLC 5G Robotics Challenge sponsored by Verizon and Ericsson, Waypoint Robotics Inc. recently delivered a mobile manipulation platform to the 5G Lab at the Alley here. The challenge winners will use the mobile manipulation system, which includes Waypoint’s flagship Vector autonomous mobile industrial robot and its quick-swappable UR5 payload, to develop robotics solutions bolstered by 5G technology.

This first-of-its-kind challenge asks teams to create 5G-powered robotics technologies in three key areas: industrial automation, collaborative robotics (cobots), and warehouse automation. As part of the program, winners will be able to use the Vector mobile manipulation platform as needed. They will also have access to dedicated 5G networks at Verizon’s 5G laboratories in Cambridge and Waltham, Mass., as well as 5G training and mentorship from Verizon and Ericsson.

“We are excited to support the 5G Robotics Challenge winners who are working to accelerate robotics development with the advantages offered by 5G technology and mobile edge computing” said Jason Walker, CEO of Merrimack, N.H.-based Waypoint Robotics. “This is a great example of the thriving New England robotics community working together to push forward innovative technologies that will have real benefits for the workforce and the companies they work for.”

Waypoint Robotics is providing support to the MassTLC 5G Robotics Challenge teams.

Participants in the 5G Robotics Challenge, sponsored by Verizon and Ericsson, can use Waypoint Robotics’ platform. Source: MassTLC

After a strong response to the call for proposals, the winning teams were announced by the Massachusetts Technology Leadership Council (MassTLC) in February. They include university teams from Northeastern University and the University of Massachusetts, Lowell, as well as four start-ups: Ava Robotics, GreenSight Agronomics, RealBotics, and Southie Autonomy.

Winners of the 5G Challenge each received $30,000 in grant funding to create insights, develop new use cases, and conceive innovative products that will advance the robotics industry by leveraging the unique speed, bandwidth and latency benefits of Verizon’s 5G technology and Mobile Edge Compute.

The volume of ideas and creativity proposed during the submittal process underscores a thriving greater Boston robotics community, said MassTLC. Challenges like these with support from organizations like MassTLC, Verizon, and Ericsson help fuel this growth.

Waypoint Robotics said it will continue to contribute to the robotics community by offering advanced technology that is easy to use for both the industrial workforce and entrepreneurs alike who are putting real robots to work in the real world.

Wenco, Hitachi Construction Machinery announce open ecosystem for autonomous mining

Wenco, Hitachi Construction Machinery announce open ecosystem for autonomous mining

Autonomous mining haulage in Australia. Source: Wenco

TOKYO — Hitachi Construction Machinery Co. last week announced its vision for autonomous mining — an open, interoperable ecosystem of partners that integrate their systems alongside existing mine infrastructure.

Grounded in support for ISO standards and a drive to encourage new entrants into the mining industry, Hitachi Construction Machinery (HCM) said it is pioneering this approach to autonomy among global mining technology leaders. HCM has now publicly declared support for standards-based autonomy and is offering its technology to assist mining customers in integrating new vendors into their existing infrastructure. HCM’s support for open, interoperable autonomy is based on its philosophy for its partner-focused Solution Linkage platform.

“Open innovation is the guiding technological philosophy for Solution Linkage,” said Hideshi Fukumoto, vice president, executive officer, and chief technology officer at HCM. “Based on this philosophy, HCM is announcing its commitment to championing the customer enablement of autonomous mining through an open, interoperable ecosystem of partner solutions.”

“We believe this open approach provides customers the greatest flexibility and control for integrating new autonomous solutions into their existing operations while reducing associated risks and costs of alternative approaches.,” he said.

The HCM Group is developing this open autonomy approach under the Solution Linkage initiative, a platform already available to HCM’s customers in the construction industry now being made available to mining customers with support from HCM subsidiary Wenco International Mining Systems (Wenco).

Three development principles for Wenco, Hitachi

Solution Linkage is a standards-based platform grounded on three principles: open innovation, interoperability, and a partner ecosystem.

In this context, “open innovation” means the HCM Group’s support for open standards to enable the creation of multi-vendor solutions that reduce costs and increase value for customers.

By designing solutions in compliance with ANSI/ISA-95 and ISO standards for autonomous interoperability, Solution Linkage avoids vendor lock-in and offers customers the freedom to choose technologies from preferred vendors independent of their fleet management system, HCM said. This approach future-proofs customer technology infrastructure, providing a phased approach for their incorporation of new technologies as they emerge, claimed the company.

This approach also benefits autonomy vendors who are new to mining, since they will be able to leverage a HCM’s technology and experience in meeting the requirements of mining customers.

The HCM Group’s key capability of interoperability creates simplified connectivity between systems to reduce operational silos, enabling end-to-end visibility and control across the mining value chain. HCM said that customers can use Solution Linkage to connect autonomous equipment from multiple vendors into existing fleet management and operations infrastructure.

The interoperability principle could also provide mines a systems-level understanding of their pit-to-port operation, providing access to more robust data analytics and process management. This capability would enable mine managers to make superior decisions based on operation-wide insight that deliver end-to-end optimization, said HCM.

Wenco and Hitachi have set open interoperability as goals for mining automation

Mining customers think about productivity and profitability throughout their entire operation, from geology to transportation — from pit to port. Source: Wenco

HCM’s said its partner ecosystem will allow customers and third-party partners to use its experience and open platform to successfully provide autonomous functionality and reduce the risk of technological adoption. This initiative is already working with a global mining leader to integrate non-mining OEM autonomous vehicles into their existing mining infrastructure.

Likewise, HCM is actively seeking customer and vendor partnerships to further extend the value of this open, interoperable platform. If autonomy vendors have already been selected by a customer and are struggling to integrate into the client’s existing fleet management system or mine operations, Hitachi may be able to help using the Solution Linkage platform.

The HCM Group will reveal further details of its approach to open autonomy and Solution Linkage in a presentation at the CIM 2019 Convention, running April 28 to May 1 at the Palais de Congrès in Montreal, Canada. Fukumoto and other senior executives from Hitachi and Wenco will discuss this strategy and details of Hitachi’s plans for mining in several presentations throughout the event. The schedule of Hitachi-related events is as follows:

  • Sunday, April 28, 4:30 PM — A welcome speech at the event’s Opening Ceremonies by Wenco Board Member and HCM Executive Officer David Harvey;
  • Monday, April 29, 10:00 AM — An Innovation Stage presentation on the Solution Linkage vision for open autonomy by Wenco Board Member and HCM Vice President and Executive Officer, CTO Hideshi Fukumoto;
  • Monday, April 29, 12:00 PM — Case Study: Accelerating Business Decisions and Mine Performance Through Operational Data Analysis at an Australian Coal Operation technical breakout presentation by Wenco Executive Vice-President of Corporate Strategy Eric Winsborrow;
  • Monday, April 29, 2:00 PM — Toward an Open Standard in Autonomous Control System Interfaces: Current Issues and Best Practices technical breakout presentation by Wenco Director of Technology Martin Politick;
  • Tuesday, April 30, 10:00 AM — An Innovation Stage presentation on Hitachi’s vision for data and IoT in mining by Wenco Executive Vice-President of Corporate Strategy Eric Winsborrow;
  • Wednesday, May 1, 4:00 PM — A concluding speech at the event’s closing luncheon by Wenco Board Member and HCM General Manager of Solution Business Center Yoshinori Furuno.

These presentations further detail the ongoing work of HCM and support the core message about open, interoperable, partner ecosystems.

To learn more about the HCM announcement in support of open and interoperable mining autonomy, Solution Linkage, or other HCM’s solutions, please contact Hitachi Construction Machinery.

Snake-inspired robot uses kirigami for swifter slithering

Bad news for ophiophobes: Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new and improved snake-inspired soft robot that is faster and more precise than its predecessor.

The robot is made using kirigami — a Japanese paper craft that relies on cuts to change the properties of a material. As the robot stretches, the kirigami surface “pops up” into a 3-D-textured surface, which grips the ground just like snake skin.

The first-generation robot used a flat kirigami sheet, which transformed uniformly when stretched. The new robot has a programmable shell, so the kirigami cuts can pop up as desired, improving the robot’s speed and accuracy.

The research was published in the Proceedings of the National Academy of Sciences.

“This is a first example of a kirigami structure with non-uniform pop-up deformations,” said Ahmad Rafsanjani, a postdoctoral fellow at SEAS and first author of the paper. “In flat kirigami, the pop-up is continuous, meaning everything pops at once. But in the kirigami shell, pop up is discontinuous. This kind of control of the shape transformation could be used to design responsive surfaces and smart skins with on-demand changes in their texture and morphology.”

The new research combined two properties of the material — the size of the cuts and the curvature of the sheet. By controlling these features, the researchers were able to program dynamic propagation of pop ups from one end to another, or control localized pop-ups.

Snake-inspired robot slithers even better than predecessor

This programmable kirigami metamaterial enables responsive surfaces and smart skins. Source: Harvard SEAS

In previous research, a flat kirigami sheet was wrapped around an elastomer actuator. In this research, the kirigami surface is rolled into a cylinder, with an actuator applying force at two ends. If the cuts are a consistent size, the deformation propagates from one end of the cylinder to the other. However, if the size of the cuts are chosen carefully, the skin can be programmed to deform at desired sequences.

“By borrowing ideas from phase-transforming materials and applying them to kirigami-inspired architected materials, we demonstrated that both popped and unpopped phases can coexists at the same time on the cylinder,” said Katia Bertoldi, the William and Ami Kuan Danoff Professor of Applied Mechanics at SEAS and senior author of the paper. “By simply combining cuts and curvature, we can program remarkably different behavior.”

Related content: 10 biggest challenges in robotics

Next, the researchers aim to develop an inverse design model for more complex deformations.

“The idea is, if you know how you’d like the skin to transform, you can just cut, roll, and go,” said Lishuai Jin, a graduate student at SEAS and co-author of the article.

This research was supported in part by the National Science Foundation. It was co-authored by Bolei Deng.

Editor’s note: This article was republished from the Harvard John A. Paulson School of Engineering and Applied Sciences.