SAN JOSE, Calif. — Velodyne Lidar Inc. today announced that it has acquired Mapper.ai’s mapping and localization software, as well as its intellectual property assets. Velodyne said that Mapper’s technology will enable it to accelerate development of the Vella software that establishes its directional view Velarray lidar sensor.
The Velarray is the first solid-state Velodyne lidar sensor that is embeddable and fits behind a windshield, said Velodyne, which described it as “an integral component for superior, more effective advanced driver assistance systems” (ADAS).
The company provides lidar sensors for autonomous vehicles and driver assistance. David Hall, Velodyne’s founder and CEO invented real-time surround-view lidar systems in 2005 as part of Velodyne Acoustics. His invention revolutionized perception and autonomy for automotive, new mobility, mapping, robotics, and security.
Velodyne said its high-performance product line includes a broad range of sensors, including the cost-effective Puck, the versatile Ultra Puck, and the autonomy-advancing Alpha Puck.
Mapper.ai staffers to join Velodyne
Mapper’s entire leadership and engineering teams will join Velodyne, bolstering the company’s large and growing software-development group. The talent from Mapper.ai will augment the current team of engineers working on Vella software, which will accelerate Velodyne’s production of ADAS systems.
Velodyne claimed its technology will allow customers to unlock advanced capabilities for ADAS features, including pedestrian and bicycle avoidance, Lane Keep Assistance (LKA), Automatic Emergency Braking (AEB), Adaptive Cruise Control (ACC), and Traffic Jam Assist (TJA).
“By adding Vella software to our broad portfolio of lidar technology, Velodyne is poised to revolutionize ADAS performance and safety,” stated Anand Gopalan, chief technology officer at Velodyne. “Expanding our team to develop Vella is a giant step towards achieving our goal of mass-producing an ADAS solution that dramatically improves roadway safety.”
“Mapper technology gives us access to some key algorithmic elements and accelerates our development timeline,” Gopalan added. “Together, our sensors and software will allow powerful lidar-based safety solutions to be available on every vehicle.”
Mapper.ai developers will work on the Vella software for the Velarray sensor. Source: Velodyne Lidar
“Velodyne has both created the market for high-fidelity automotive lidar and established itself as the leader. We have been Velodyne customers for years and have already integrated their lidar sensors into easily deployable solutions for scalable high-definition mapping,” said Dr. Nikhil Naikal, founder and CEO of Mapper, who is joining Velodyne. “We are excited to use our technology to speed up Velodyne’s lidar-centric software approach to ADAS.”
In addition to ADAS, Velodyne said it will incorporate Mapper technology into lidar-centric solutions for other emerging applications, including autonomous vehicles, last-mile delivery services, security, smart cities, smart agriculture, robotics, and unmanned aerial vehicles.
Smart manufacturing investments. Source: GP Bullhound
Continuing improvements in software and hardware are leading to trends such as Manufacturing-as-a-Service, hyper-personalization of products on demand, and a reinvention of the capital goods economy, found a new study. Last month, GP Bullhound issued a new report titled “Smart Manufacturing: The Rise of the Machines.”
The report provided a global, in-depth look at how smart manufacturing gained momentum between 2013 and 2018. It also drew conclusions about the potential future for manufacturing in terms of growth, investment, and the value of data. With robotics still largely serving manufacturing, engineers can get a glimpse of trends for which to prepare.
GP Bullhound reviewed the value of smart manufacturing transactions. China and Japan have led in smart manufacturing, with a market value of $28 billion, according to the technology advisory and investment firm. Europe followed with $24 billion, and the U.S. lagged at $20 billion.
The report found 1,300 venture capital transactions worldwide, worth a total of $17.4 billion. The U.S. led in investments, with American startups receiving $11.4 billion, compared with $3.9 billion in Asia and $2.1 billion in Europe. GP Bullhound also found $37.7 billion in mergers and acquisitions during the five-year period.
Sources: Pitchbook, Capital IQ, company websites, press releases, GP Bullhound
In addition, the report noted that data is growing in value, despite debates over how and whether production should be automated.
Dr. Nikolas Westphal, director at GP Bullhound, answered several questions from The Robot Report about the study’s findings:
Whether we call it “smart manufacturing,” “Industry 4.0,” or something else, the combination of machine learning, big data, the Internet of Things (IoT), and robotics is arriving, according to your report. But how ready are most companies — especially those outside the electronics and automotive verticals — for it?
Westphal: Smart manufacturing readiness is something that we discussed with several of our interview partners, including interviewees from leading European software houses and IoT platforms.
The current state seems to be that most OEMs are substantially increasing the density of IoT devices within their equipment in order to make it “smart” and are also working on the required digital platforms. As “smart” equipment proliferates, more and more manufacturing operators of all sizes will start to increasingly use methodologies of smart manufacturing.
Source: GP Bullhound
When it comes to digitization by industry, our research indeed indicates that electronics and automotive are furthest down the line on the journey to end-to-end digitization. In general, I would say that today, industries with the highest scale effects are also the most automated. With the emergence of smaller, more flexible robotic equipment — such as collaborative robots, additive manufacturing, and data-driven factory design — we believe that also smaller players will be able to reap the rewards of smart automation.
Some of the companies featured in our report actually address this challenge for companies of all sizes. One example for this is Oden Technologies, which is featured in Section 2 of our report.
Investments in robotics and startups have slowed in the past quarter, but do you think that’s temporary and why?
Westphal: Quarterly VC funding data is notoriously hard to interpret, as it follows transaction cycles. Applying our search criteria for smart manufacturing startups, global VC funding in smart manufacturing in Q1 2019 has stood at €1.02 billion ($1.14 billion U.S.) across 73 deals versus €1.07 billion ($1.2 billion U.S.) in Q4 2018 [Source: Pitchbook]. As there is somewhat of a reporting lag, I expect the Q1 2019 figure to be gradually adjusted upward throughout the year.
Source: GP Bullhound
How might a cyclical economic recession affect spending on industrial automation and smart manufacturing?
Westphal: I believe that a recession may not necessarily long-term impact investments into industrial automation specifically. While replacement cycles may somewhat slow, efficiency will be increasingly important in a recession situation.
The section on productivity gains from smart manufacturing cites Volvo as an example. How is Volvo’s use of robots part of a technology cluster?
Westphal: The tables and the case studies were supplied by our feature partner Accenture. On the left-hand side of both Figure 1 and 2, you can see the different relevant technologies, on the right-hand side different industry verticals. The percentages indicate the incremental cost savings per employee in Figure 1 as well as the projected implied additional gains in market capitalization in Figure 2.
For example, in automotive, autonomous robots and AI seem to have the biggest impact, in addition to 3D printing, blockchain, and big data. Overall, Accenture believes that the combinatory effect of these technologies will add up to incremental cost savings per employee of 13.9% for automotive.
How much is simulation software being applied to the design and implementation of robotics? How far are we from “lights-out” manufacturing?
Westphal: This question is addressed to some extent by the feature of Brian Mathews of Bright Machines. Once the computer vision and control challenges have been addressed, lights out manufacturing should become a reality.
Source: GP Bullhound
Several robotics vendors have told us that they want to “keep humans in the loop,” so what sorts of processes are better for collaboration vs. full autonomy with “software-defined” manufacturing?
Westphal: From our interviews on the topic, it seems to me that high-volume, repetitive, but complex processes that require a high degree of accuracy are well-suited for full autonomy, while processes that require a high degree of versatility are better suited for collaboration.
Westphal: The Teradyne-Universal Robots deal is featured on p. 33. Honeywell/Intelligrated is part of our database but not featured in the selected landmark transactions. We have not only selected those by size, but also other criteria like sector fit and visibility.
The creation of OnRobot is not shown in Section 3 as we weren’t able to find publicly available data on funding amount. OnRobot itself is featured as a notable company on p. 63 of the report.
Will trade tensions between the West and China slow the trend to cross-border consolidation?
Westphal: It seems that Chinese outbound investment is really geared towards utilizing technologies in China’s huge manufacturing sector. Especially as Europe does not seem to engage in restrictive trade policies with China (yet), I would expect this trend to continue.
Cross-border deals. Source: GP Bullhound
Since GP Bullhound is watching investments in hardware and the software stack around smart manufacturing, has it identified any strategic leaders?
Westphal: We don’t provide investment advice. A selection of companies that we find interesting can be found on p. 62 and 63 of the report.
CloudMinds was among the robotics companies receiving funding in March 2019. Source: CloudMinds
Investments in robots, autonomous vehicles, and related systems totaled at least $1.3 billion in March 2019, down from $4.3 billion in February. On the other hand, automation companies reported $7.8 billion in mergers and acquisitions last month. While that may represent a slowdown, note that many businesses did not specify the amounts involved in their transactions, of which there were at least 58 in March.
Self-driving cars and trucks — including machine learning and sensor technologies — continued to receive significant funding. Although Lyft’s initial public offering was not directly related to autonomous vehicles, it illustrates the investments flowing for transportation.
Other use cases represented in March 2019 included surgical robotics, industrial automation, and service robots. See the table below, which lists amounts in millions of dollars where they were available:
Company
Amt. (M$)
Type
Lead investor, partner, acquirer
Date
Technology
Airbiquity
15
investment
Denso Corp., Toyota Motor Corp., Toyota Tsushu Corp.
March 12, 2019
connected vehicles
AROMA BIT Inc.
2.2
Series A
Sony Innovation Fund
March 3, 2019
olofactory sensors
AtomRobot
Series B1
Y&R Capital
March 5, 2019
industrial automation
Automata
7.4
Series A
ABB
March 19, 2019
robot arm
Avidbots
23.6
Series B
True Ventures
March 21, 2019
commercial floor cleaning
Boranet
Series A
Gobi Partners
March 6, 2019
IIoT, machine vision
Broadmann17
11
Series A
OurCrowd
March 6, 2019
deep learning, autonomous vehicles
Cloudminds
300
investment
SoftBank Vision Fund
March 26, 2019
service robots
Corindus
4.8
private placement
March 12, 2019
surgical robot
Determined AI
11
Series A
GV (Google Ventures)
March 13, 2019
AI, deep learning
Emergen Group
29
Series B
Qiming Venture Partners
March 13, 2019
industrial automation
Fabu Technology
pre-Series A
Qingsong Fund
March 1, 2019
autonomous vehicles
Fortna
recapitalization
Thomas H. Lee PArtners LP
March 27, 2019
materlais handling
ForwardX
14.95
Series B
Hupang Licheng Fund
March 21, 2019
autonomous mobile robots
Gaussian Robotics
14.9
Series B
Grand Flight Investment
March 20, 2019
cleaning
Hangzhou Guochen Robot Technology
15
Series A
Hongcheng Capital, Yingshi Fund (YS Investment)
March 13, 2019
robotics R&D
Hangzhou Jimu Technology Co.
Series B
Flyfot Ventures
March 6, 2019
autonomous vehicles
InnerSpace
3.2
seed
BDC Capital's Women in Technology Fund
March 26, 2019
IoT
Innoviz Technologies
132
Series C
China Merchants Capital, Shenzhen Capital Group, New Alliance Capital
March 26, 2019
lidar
Intelligent Marking
investment
Benjamin Capital
March 6, 2019
autonomous robots for marking sports fields
Kaarta Inc.
6.5
Series A
GreenSoil Building Innovation Fund
March 21, 2019
lidar mapping
Kolmostar Inc.
10
Series A
March 5, 2019
positioning technology
Linear Labs
4.5
seed
Science Inc., Kindred Ventures
March 26, 2019
motors
MELCO Factory Automation Philippines Inc.
2.38
new division
Mitsubishi Electric Corp.
March 12, 2019
industrial automation
Monet Technologies
4.51
joint venture
Honda Motor Co., Hino Motors Ltd., SoftBank Corp., Toyota Motor Corp
Bonfire Ventures, Vertex Ventures, London Venture Partners
March 11, 2019
machine vision
Vtrus
2.9
investment
March 8, 2019
drone inspection
Weltmeister Motor
450
Series C
Baidu Inc.
March 11, 2019
self-driving cars
And here are the mergers and acquisitions:
March 2019 robotics acquisitions
Company
Amt. (M$)
Acquirer
Date
Technology
Accelerated Dynamics
Animal Dynamics
3/8/2019
AI, drone swarms
Astori AS
4Subsea
3/19/2019
undersea control systems
Brainlab
Smith & Nephew
3/12/2019
surgical robot
Figure Eight
175
Appen Ltd.
3/10/2019
AI, machine learning
Floating Point FX
CycloMedia
3/7/2019
machine vision, 3D modeling
Florida Turbine Technologies
60
Kratos Defense and Security Solutions
3/1/2019
drones
Infinity Augmented Reality
Alibaba Group Holding Ltd.
3/21/2019
AR, machine vision
Integrated Device Technology Inc.
6700
Renesas
3/30/2019
self-driving vehicle processors
Medineering
Brainlab
3/20/2019
surgical
Modern Robotics Inc.
0.97
Boxlight Corp.
3/14/2019
STEM
OMNI Orthopaedics Inc.
Corin Group
3/6/2019
surgical robotics
OrthoSpace Ltd.
220
Stryker Corp.
3/14/2019
surgical robotics
Osiris Therapeutics
660
Smith & Nephew
3/12/2019
surgical robotics
Restoration Robotics Inc.
21
Venus Concept Ltd.
3/15/2019
surgical robotics
Sofar Ocean Technologies
7
Spoondrift, OpenROV
3/28/2019
underwater drones, sensors
Torc Robotics Inc.
Daimler Trucks and Buses Holding Inc.
3/29/2019
driverless truck software
Surgical robots make the cut
One of the largest transactions reported in March 2019 was Smith & Nephew’s purchase of Osiris Therapeutics for $660 million. However, some Osiris shareholders are suing to block the acquisition because they believe the price that U.K.-based Smith & Nephew is offering is too low. The shareholders’ confidence reflects a hot healthcare robotics space, where capital, consolidation, and chasing new applications are driving factors.
Venus Concept Ltd. merged with hair-implant provider Restoration Robotics for $21 million, and Shanghai Changren Information Technology raised Series A funding of $14.89 million for its Xiaobao healthcare robot.
Aside from Lyft, the biggest reported transportation robotics transaction in March 2019 was Renesas’ completion of its $6.7 billion purchase of Integrated Device Technology Inc. for its self-driving car chips.
The next biggest deal was Weltmeister Motor’s $450 million Series C, in which Baidu Inc. participated.
Lidar also got some support, with Innoviz Technologies raising $132 million in a Series C round, and Ouster raising $60 million. In a prime example of how driverless technology is “paying a peace dividend” to other applications, Google parent Alphabet’s Waymo unit offered its custom lidar sensors to robotics, security, and agricultural companies.
Automakers recognize the need for 3-D modeling, sensors, and software for autonomous vehicles to navigate safely and accurately. A Daimler unit acquired Torc Robotics Inc., which is working on driverless trucks, and CycloMedia acquired machine vision firm Floating Point FX. The amounts were not specified.
Speaking of machine learning, Appen Ltd. acquired dataset annotation company Figure Eight for $175 million, with an possible $125 million more based on 2019 performance. Denso Corp. and Toyota Motor Corp. contributed $15 million to Airbiquity, which is working on connected vehicles.
Service robots clean up
From retail to cleaning and customer service, the combination of improving human-machine interactions, ongoing staffing turnover and shortages, and companies with round-the-clock operations has contributed to investor interest.
The SoftBank Vision Fund participated in a $300 million round for CloudMinds. The Chinese AI and robotics company’s XR-1 is a humanoid service robot, and it also makes security robots and connects robots to the cloud.
According to its filing with the U.S. Securities and Exchange Commission, TakeOff Technologies Inc. raised an unspecified amount for its grocery robots, an area that many observers expect to grow as consumers become more accustomed to getting home deliveries.
On the cleaning side, Avidbots raised $23.6 million in Series B, led by True Ventures. Gaussian Robotics’ Series B was $14.9 million, with participation from Grand Flight Investment.
China’s efforts to develop its domestic robotics industry continued, as Emergen Group’s $29 million Series B round was the largest reported investment in industrial automation last month.
Hangzhou Guochen Robot Technology raised $15 million in Series A funding for robotics research and development and integration.
Data startup Spopondrift and underwater drone maker OpenROV merged to form Sofar Ocean Technologies. The new San Francisco company also announced a Series A round of $7 million. Also, 4Subsea acquired underwater control systems maker Astori AS.
In the aerial drone space, Kratos Defense and Security Solutions acquired Florida Turbine Technologies for $60 million, and Vtrus raised $2.9 million for commercializing drone inspections. Kaarta Inc., which makes a lidar for indoor mapping, raised $6.5 million.
The Robot Reportbroke the news of Aria Insights, formerly known as CyPhy Works, shutting down in March 2019.
Editors Note: What defines robotics investments? The answer to this simple question is central in any attempt to quantify robotics investments with some degree of rigor. To make investment analyses consistent, repeatable, and valuable, it is critical to wring out as much subjectivity as possible during the evaluation process. This begins with a definition of terms and a description of assumptions.
Investors and Investing
Investment should come from venture capital firms, corporate investment groups, angel investors, and other sources. Friends-and-family investments, government/non-governmental agency grants, and crowd-sourced funding are excluded.
Robotics and Intelligent Systems Companies
Robotics companies must generate or expect to generate revenue from the production of robotics products (that sense, think, and act in the physical world), hardware or software subsystems and enabling technologies for robots, or services supporting robotics devices. For this analysis, autonomous vehicles (including technologies that support autonomous driving) and drones are considered robots, while 3D printers, CNC systems, and various types of “hard” automation are not.
Companies that are “robotic” in name only, or use the term “robot” to describe products and services that that do not enable or support devices acting in the physical world, are excluded. For example, this includes “software robots” and robotic process automation. Many firms have multiple locations in different countries. Company locations given in the analysis are based on the publicly listed headquarters in legal documents, press releases, etc.
Verification
Funding information is collected from a number of public and private sources. These include press releases from corporations and investment groups, corporate briefings, and association and industry publications. In addition, information comes from sessions at conferences and seminars, as well as during private interviews with industry representatives, investors, and others. Unverifiable investments are excluded.
Navio robotic-assisted surgery system. (Credit: Smith & Nephew)
Smith & Nephew has acquired Brainlab‘s orthopedic joint reconstruction business and teased the unveiling of a next-generation surgical robotics platform for later in 2019.
The London-based company said that its acquisition of Brainlab’s orthopaedic joint reconstruction business included its associated salesforce, which it plans to fold into its surgical robotics division. It added that it will look to install Brainlab’s hip software onto its currently-in-development Navio 7.0 handheld surgical system, which it plans to release during the second half of this year.
Along with the acquisition, Smith & Nephew said that it inked a collaborative development deal with Brainlab to develop additional applications for its advanced automation platform.
“The near-term commercial opportunities with the innovation of our robotics platform and the integration of the Brainlab hip software are very compelling. Not to mention, the strong collaboration on design and development of next generation technology that will bring our customers more differentiated advanced surgical capabilities. We’re excited to work together with Brainlab to bring the future of the digitally integrated O.R. to life and into the hands of surgeons world-wide,” Skip Kiil, President, Global Orthopeadics, Smith & Nephew said in a prepared statement.
In the same release, the company said that it expects to complete development of its next-generation surgical robotics platform some time later this year, with a full commercial release in 2020. It teased that the new platform will have a dramatically reduced footprint and be able to be incorporated into the company’s sports medicine tower, and that the system will be faster than its still-in-development Navio 7.0.
Smith & Nephew added that its research & development program is looking to add augmented reality, stand-alone robotic arms and machine learning to the platform, and that it plans to open a new R&D and education center focused on robotics in Pittsburgh.
“Smith & Nephew is making a long-term commitment to bring together advanced technologies in robotics, digital surgery, and machine learning as well as augmented reality to empower surgeons and improve clinical outcomes. Over time these digital surgery and robotic assets will be deployed across all surgical specialities and healthcare settings where Smith & Nephew’s operates, starting with orthopaedic reconstruction and sports medicine,” CEO Namal Nawana said in a press release.