TIAGo++ robot from PAL Robotics ready for two-armed tasks

Among the challenges for developers of mobile manipulation and humanoid robots is the need for an affordable and flexible research platform. PAL Robotics last month announced its TIAGo++, a robot that includes two arms with seven degrees of freedom each.

As with PAL Robotics‘ one-armed TIAGo, the new model is based on the Robot Operating System (ROS) and can be expanded with additional sensors and end effectors. TIAGo++ is intended to enable engineers to create applications that include a touchscreen interface for human-robot interaction (HRI) and require simultaneous perception, bilateral manipulation, mobility, and artificial intelligence.

In addition, TIAGo++ supports NVIDIA’s Jetson TX2 as an extra for machine learning and deep learning development. Tutorials for ROS and open-source simulation for TIAGo are available online.

Barcelona, Spain-based PAL, which was named a “Top 10 ROS-based robotics company to watch in 2019,” also makes the Reem and TALOS robots.

Jordi Pagès, product manager of the TIAGo robot at PAL Robotics responded to the following questions about TIAGo++ from The Robot Report:

For the development of TIAGo++, how did you collect feedback from the robotics community?

Pagès: PAL Robotics has a long history in research and development. We have been creating service robotics platforms since 2004. When we started thinking about the TIAGo robot development, we asked researchers from academia and industry which features would they expect or value in a platform for research.

Our goal with TIAGo has always been the same: to deliver a robust platform for research that easily adapts to diverse robotics projects and use cases. That’s why it was key to be in touch with the robotics and AI developers from start.

After delivering the robots, we usually ask for feedback and stay in touch with the research centers to learn about their activities and experiences, and the possible improvements or suggestions they would have. We do the same with the teams that use TIAGo for competitions like RoboCup or the European Robotics League [ERL].

At the same time, TIAGo is used in diverse European-funded projects where end users from different sectors, from healthcare to industry, are involved. This allows us to also learn from their feedback and keep finding new ways in which the platform could be of help in a user-centered way. That’s how we knew that adding a second arm into the TIAGo portfolio of its modular possibilities could be of help to the robotics community.

How long did it take PAL Robotics to develop the two-armed TIAGo++ in comparison with the original model?

Pagès: Our TIAGo platform is very modular and robust, so it took us just few months from taking the decision to having a working TIAGo++ ready to go. The modularity of all our robots and our wide experience developing humanoids usually helps us a lot in reducing the redesign and production time.

The software is also very modular, with extensive use of ROS, the de facto standard robotics middleware. Our customers are able to upgrade, modify, and substitute ROS packages. That way, they can focus their attention on their real research on perception, navigation, manipulation, HRI, and AI.

How high can TIAGo++ go, and what’s its reach?

Pagès: TIAGo++ can reach the floor and up to 1.75m [5.74 ft.] high with each arm, thanks to the combination of its 7 DoF [seven degrees of freedom] arms and its lifting torso. The maximum extension of each arm is 92cm [36.2 in.]. In our experience, this workspace allows TIAGo to work in several environments like domestic, healthcare, and industry.

TIAGo++ robot from PAL Robotics

The TIAGo can extend in height, and each arm has a reach of about 3 ft. Source: PAL Robotics

What’s the advantage of seven degrees of freedom for TIAGo’s arms over six degrees?

Pagès: A 7-DoF arm is much better in this sense for people who will be doing manipulation tasks. Adding more DoFs means that the robot can arrive to more poses — positions and orientations — of its arm and end-effector that it couldn’t reach before.

Also, this enables developers to reduce singularities, avoiding non-desired abrupt movements. This means that TIAGo has more possibilities to move its arm and reach a certain pose in space, with a more optimal combination of movements.

What sensors and motors are in the robot? Are they off-the-shelf or custom?

Pagès: All our mobile-based platforms, like the TIAGo robot, combine many sensors. TIAGo has a laser and sonars to move around and localize itself in space, an IMU [inertial measurement unit], and an RGB-D camera in the head. It can have a force/torque sensor on the wrist, especially useful to work in HRI scenarios. It also has a microphone and a speaker.

TIAGo has current sensing in every joint of the arm, enabling a very soft, effortless torque control on each of the arms. The possibility of having an expansion panel with diverse connectors makes it really easy for developers to add even more sensors to it, like a thermal camera or a gripper camera, once they have TIAGo in their labs.

About the motors, TIAGo++ makes use our custom joints integrating high-quality commercial components and our own electronic power management and control. All motors also have encoders to measure the current motor position.

What’s the biggest challenge that a humanoid like TIAGo++ can help with?

Pagès: TIAGo++ can help with are those tasks that require bi-manipulation, in combination with navigation, perception, HRI, or AI. Even though it is true that a one-arm robot can already perform a wide range of tasks, there are many actions in our daily life that require of two arms, or that are more comfortably or quickly done with two arms rather than one.

For example, two arms are good for grasping and carrying a box, carrying a platter, serving liquids, opening a bottle or a jar, folding clothes, or opening a wardrobe while holding an object. In the end, our world and tools have been designed for the average human body, which is with two arms, so TIAGo++ can adapt to that.

As a research platform based on ROS, is there anything that isn’t open-source? Are navigation and manipulation built in or modular?

Pagès: Most software is provided either open-sourced or with headers and dynamic libraries so that customers can develop applications making use of the given APIs or using the corresponding ROS interfaces at runtime.

For example, all the controllers in TIAGo++ are plugins of ros_control, so customers can implement their own controllers following our public tutorials and deploy them on the real robot or in the simulation.

Moreover, users can replace any ROS package by their own packages. This approach is very modular, and even if we provide navigation and manipulation built-in, developers can use their own navigation and manipulation instead of ours.

Did PAL work with NVIDIA on design and interoperability, or is that an example of the flexibility of ROS?

Pagès: It is both an example of how easy is to expand TIAGo with external devices and how easy is to integrate in ROS these devices.

One example of applications that our clients have developed using the NVIDIA Jetson TX2 is the “Bring me a beer” task from the Homer Team [at RoboCup], at the University of Koblenz-Landau. They made a complete application in which TIAGo robot could understand a natural language request, navigate autonomously to the kitchen, open the fridge, recognize and select the requested beer, grasp it, and deliver it back to the person who asked for it.

As a company, we work with multiple partners, but we also believe that our users should be able to have a flexible platform that allows them to easily integrate off-the-shelf solutions they already have.

How much software support is there for human-machine interaction via a touchscreen?

Pagès: The idea behind integrating a touchscreen on TIAGo++ is to bring customers the possibility to implement their own graphical interface, so we provide full access to the device. We work intensively with researchers, and we provide platforms as open as our customers need, such as a haptic interface.

What do robotics developers need to know about safety and security?

Pagès: A list of safety measures and best practices are provided in the Handbook of TIAGo robot in order that customers ensure safety both around the robot and for the robot itself.

TIAGo also features some implicit control modes that help to ensure safety while operation. For example, an effort control mode for the arms is provided so that collisions can be detected and the arm can be set in gravity compensation mode.

Furthermore, the wrist can include a six-axis force/torque sensor providing more accurate feedback about collisions or interactions of the end effector with the environment. This sensor can be also used to increase the safety of the robot. We provide this information to our customers and developers so they are always aware about the safety measures.

Have any TIAGo users moved toward commercialization based on what they’ve learned with PAL’s systems?

Pagès: At the moment, from the TIAGo family, we commercialize the TIAGo Base for intralogistics automation in indoor spaces such as factories or warehouses.

Some configurations of the TIAGo robot have been tested in pilots in healthcare applications. In the EnrichMe H2020 EU Project, the robot gave assistance to old people at home autonomously for up to approximately two months.

In robotics competitions such as the ERL, teams have shown the quite outstanding performance of TIAGo in accomplishing specific actions in a domestic environment. Two teams ended first and third in the RoboCup@Home OPL 2019 in Sydney, Australia. The Homer Team won for the third time in a row using TIAGo — see it clean a toilet here.

The CATIE Robotics Team ended up third in the first world championship in which it participated. For instance, in one task, it took out the trash.

The TIAGo robot is also used for European Union Horizon 2020 experiments in which collaborative robots that combine mobility with manipulation are used in industrial scenarios. This includes projects such as MEMMO for motion generation, Co4Robots for coordination, and RobMoSys for open-source software development.

Besides this research aspect, we have industrial customers that are using TIAGo to improve their manufacturing procedures.

How does TIAGo++ compare with, say, Rethink Robotics’ Baxter?

Pagès: With TIAGo++, besides the platform itself, you also get support, extra advanced software solutions, and assessment from a company that continues to be in the robotics sector since more than 15 years ago. Robots like the TIAGo++ also use our know-how both in software and hardware, a knowledge that the team has been gathering from the development of cutting-edge biped humanoids like the torque-controlled TALOS.

From a technical point of view, TIAGo++ was made very compact to suit environments shared with people such as homes. Baxter was a very nice entry-point platform and was not originally designed to be a mobile manipulator but a fixed one. TIAGo++ can use the same navigation used in our commercial autonomous mobile robot for intralogistics tasks, the TIAGo Base.

Besides, TIAGo++ is a fully customizable robot in all aspects: You can select the options you want in hardware and software, so you get the ideal platform you want to have in your robotics lab. For a mobile manipulator with two 7-DoF arms, force/torque sensors, ROS-based, affordable, and with community support, we believe TIAGo++ should be a very good option.

The TIAGo community is growing around the world, and we are sure that we will see more and more robots helping people in different scenarios very soon.

What’s the price point for TIAGo++?

Pagès: The starting price is around €90,000 [$100,370 U.S.]. It really depends on the configuration, devices, computer power, sensors, and extras that each client can choose for their TIAGo robot, so the price can vary.

The post TIAGo++ robot from PAL Robotics ready for two-armed tasks appeared first on The Robot Report.

RaaS and AI help retail supply chains adopt and manage robotics, says Kindred VP

Unlike industrial automation, which has been affected by a decline in automotive sales worldwide, robots for e-commerce order fulfillment continue to face strong demand. Warehouses, third-part logistics providers, and grocers are turning to robots because of competitive pressures, labor scarcities, and consumer expectations of rapid delivery. However, robotics developers and suppliers must distinguish themselves in a crowded market. The Robotics-as-a-Service, or RaaS, model is one way to serve retail supply chain needs, said Kindred Inc.

By 2025, there will be more than 4 million robots in operation at 50,000 warehouses around the world, predicted ABI Research. It cited improvements in computer vision, artificial intelligence, and deep learning.

“Economically viable mobile manipulation robots from the likes of RightHand Robotics and Kindred Systems are now enabling a wider variety of individual items to be automatically picked and placed within a fulfillment operation,” said ABI Research. “By combining mobile robots, picking robots, and even autonomous forklifts, fulfillment centers can achieve greater levels of automation in an efficient and cost-effective way.”

“Many robot technology vendors are providing additional value by offering flexible pricing options,” stated the research firm. “Robotics-as-a-Service models mean that large CapEx costs can be replaced with more accessible OpEx costs that are directly proportional to the consumption of technologies or services, improving the affordability of robotics systems among the midmarket, further driving adoption.”

The Robot Report spoke with Victor Anjos, who recently joined San Francisco-based Kindred as vice president of engineering, about how AI and RaaS can help the logistics industry.

Kindred applies AI to sortation

Can you briefly describe Kindred’s offerings?

Anjos: Sure. Kindred makes AI-enhanced, autonomous, piece-picking robots. Today, they’re optimized to perform the piece-picking process in a fulfillment center, for example, in a facility that fills individual e-commerce orders.

It’s important to understand our solution is more than a shiny robotic arm. Besides the part you can see  — the robotic arm — our solution includes an AI platform to enable autonomous learning and in-motion planning, plus the latest in robotic technology, backed by our integration and support services.

The Robot Report visited Kindred at Automate/ProMat 2019 — what’s new since then?

Anjos: Since then, we’ve been hard at work on a new gripper optimized to handle rigid items like shampoo bottles and small cartons. We’ve got a ton of new AI models in development, and we continue to tune SORT’s performance using reinforcement learning.

What should engineers at user companies know about AutoGrasp and SORT?

Anjos: AutoGrasp is the unique combination of technologies behind SORT. There’s the AI-powered vision, grasping, and manipulation technology that allows the robot to quickly and accurately sort batches into discrete orders.

Then there’s the robotic device itself, which has been engineered for speed, agility and a wide range of motion. And finally, we offer WMS [warehouse management system] integration, process design, and deployment services, as well as ongoing maintenance and support, of course.

What use cases are better for collaborative robots or cobots versus standard industrial arms?

Anjos: Kindred’s solution is more than a robotic arm. It’s equipped with AI-enhanced computer vision, so it can work effectively in the dynamic conditions that we often find in a fulfillment environment. It responds to what it senses in real time and can even configure itself on the fly by changing the suction grip attachment while in motion.

The bottom line is, any solution that works for several different use cases is the result of compromises. That’s the nature of any multi-purpose device. We chose to optimize SORT for a specific step in the fulfillment process. That’s how we’re able to give it the ability to grasp, manipulate and place items with human-like accuracy — but with machine-like consistency and stamina.

And, like the people our robot works alongside of, SORT can learn on the job. Not only from its own experience, but based on the combined experience of other robots on the network as well.

RaaS can aid robotics adoption

RaaS Kindred Victor Anjos

Victor Anjos, VP of engineering, Kindred

Have you always offered both the AI and robotics elements of your products through an RaaS model?

Anjos: Yes, we have. Both are included in RaaS, and it has been an important part of our model.

Can you give an example of how RaaS works during implementation and then for ongoing support? What sorts of issues can arise?

Anjos: With our RaaS model, the assets are owned and maintained by Kindred, while the customer pays for the picking service as needed. Implementing RaaS eliminates the customer’s upfront capital expense.

Of course, the customer still needs to allocate operational and IT resources to make the RaaS implementation a success.

Is RaaS evolving or becoming more widespread and understood? Are there still pockets of supply chains that aren’t familiar with leasing models?

Anjos: RaaS is a relatively new concept for the supply chain industry, but it’s attracting a lot of attention. The financial model aligns with their operating budgets. And customers have an ability to scale the use of robots to meet peak demand, increasing asset utilization throughout the year.

Are there situations where it’s better to develop robots in-house or buy them outright than to use RaaS?

Anjos: Every customer I’ve spoken with has their hands full managing fulfillment operations. They’re not very eager to hire a team of AI developers to build a fleet of robots and hire engineers to maintain them! And Kindred isn’t interested in selling apparel, so it all works out!

What issues can arise during a RaaS relationship, and how much should providers and clients collaborate?

Anjos: Every supply chain system implementation is unique. During implementation, Kindred’s customer-success team works with our customer to understand performance requirements, integrate Kindred robots into their existing warehouse processes and systems, and provide onsite and remote support to ensure the success of each implementation.

Do you see RaaS spreading from order fulfillment to retail stores? What else would you like to see?

Anjos: That’s very possible. Robot use is increasing across the entire retail industry, and the RaaS model certainly makes adoption of this technology even easier and more beneficial.

For example, I can see how some of the robotic technologies developed for traditional fulfillment centers could be used in an urban or micro-fulfillment centers scenario.

The post RaaS and AI help retail supply chains adopt and manage robotics, says Kindred VP appeared first on The Robot Report.

COAST Autonomous to deploy first self-driving vehicles at rail yard

PASADENA, Calif. — COAST Autonomous today announced that Harbor Rail Services of California has selected it to deploy self-driving vehicles at the Kinney County Railport in Texas.

This groundbreaking collaboration is the first deployment of self-driving vehicles at a U.S. rail yard, said the companies. Harbor Rail and COAST teams have identified a number of areas where autonomous vehicles can add value, including staff transportation, delivery of supplies and equipment, perimeter security, and lawn mowing.

COAST Autonomous is a software and technology company focused on delivering autonomous vehicle (AV) solutions at appropriate speeds for urban and campus environments. COAST said its mission is to build community by connecting people with mobility solutions that put pedestrians first and give cities back to people.

COAST has developed a full stack of AV software that includes mapping and localization, robotics and artificial intelligence, fleet management and supervision systems. Partnering with proven manufacturers, COAST said it can provide a variety of vehicles equipped with its software to offer Mobility-as-a-Service (MaaS) to cities, theme parks, campuses, airports, and other urban environments.

The company said its team has experience and expertise in all aspects of implementing and operating AV fleets while prioritizing safety and the user experience. Last year, the company conducted a demonstration in New York’s Times Square.

Harbor Rail operates railcar repair facilities across the U.S., including the Kinney County Railport (KCRP), a state-of-the-art railcar repair facility that Harbor Rail operates near the U.S.-Mexico border. KCRP is located on 470 acres of property owned by Union Pacific, the largest railroad in North America. The facility prepares railcars to meet food-grade guidelines, so they are ready to be loaded with packaged beer in Mexico and return to the U.S. with product for distribution.

COAST completes mapping, ready to begin service

COAST has completed 3D mapping of the facility, a first step in any such deployment, and the first self-driving vehicle is expected to begin service at KCRP next month.

“Through the introduction of re-designed trucks, innovative process improvements and adoption of data-driven KPIs [key performance indicators], Harbor Rail successfully reduced railcar rejections rates from 30% to 0.03% in KCRP’s first year of operations,” said Mark Myronowicz, president of Harbor Rail. “However, I am always looking for ways to improve our performance and provide an even better service for our customers.”

COAST Autonomous to deploy first self-driving vehicles at rail yard

Source: COAST Autonomous

“At a large facility like KCRP, we have many functions that I am convinced can be carried out by COAST vehicles,” Myronowicz said. “This will free up additional labor to work on railcars, make us even more efficient, help keep the facility safe at night, and even cut the grass when most of us are asleep. This is a fantastic opportunity to demonstrate Harbor Rail’s commitment to being at the forefront of innovation and customer service.”

“This is an exciting moment for COAST, and we are looking forward to working with Harbor Rail’s industry-leading team,” said David M. Hickey, chairman and CEO of COAST Autonomous. “KCRP is exactly the type of facility that will show how self-driving technology can improve efficiency and cut costs.”

“While the futuristic vision of driverless cars has grabbed most of the headlines, COAST’s team has been focused on useful mobility solutions that can actually be deployed and create tremendous value for private sites, campuses, and urban centers,” he said. “Just as railroads are often the unsung heroes of the logistics industry, COAST’s vehicles will happily go about their jobs unnoticed and quietly change the world.”

The post COAST Autonomous to deploy first self-driving vehicles at rail yard appeared first on The Robot Report.

MiR500 mobile robot helps Cabka automate pallet transport


Germany-based Cabka Group recycles post-industrial plastics into pallets and other material handling products. Cabka North America’ 400,000-square-foot plant in the St. Louis, Missouri area runs 24/7 to manufacture about 5,000 pallets per day.

But Cabka is challenged by labor shortages due to high turnover of temporary workers, which leads to expensive downtime. At Cabka North America’s facility, workers at eleven injection molding machines unload plastic pallets and manually trim and stack them for material handlers to transport to the warehouse using fork trucks or pallet jacks. The work is repetitive and physical, making it hard to retain workers, and the presence of fork trucks on the production floor leads to safety concerns.

However, a new, fully automated production line that will be replicated throughout the facility is helping minimize dependency on temporary workers while also improving product quality and worker safety.

A Mobile Industrial Robots MiR500 autonomous mobile robot is part of that fully automated production line. The production line also includes a Krauss Maffei six-axis robot to autonomously unload pallets from the injection molding machine, trim the pallets, and load the finished products directly onto the MiR500. The MiR500, which is equipped with a MiR pallet lift, transports the finished products out of the manufacturing floor to a separate staging area as soon as the job is complete.

In the staging area, the pallets can be checked for quality and wrapped. Fork trucks then transport the finished pallets to the warehouse and loading docks without having manufacturing workers present. This will allow Cabka to eliminate fork truck traffic in the production area, replacing them with safe, collaborative mobile robots.

MiR500

Cabka North America uses a MiR500 autonomous mobile robot to transport plastic pallets. | Credit: Mobile Industrial Robots

Pilot project leads to fully optimized production

The fully automated production line is intended to be the model for the eventual automation of all eleven production lines, with a fleet of MiR robots supporting them in a dynamic, highly efficient manufacturing floor. Each AMR can go where it’s needed when it’s needed to keep production flowing.

Cabka estimates the first MiR500 travels about three miles a day supporting one production line. With eleven lines planned for autonomous material transport with multiple MiR robots, workers and fork truck drivers will be relieved from many miles of manual material handling, allowing Cabka to redeploy those workers to higher-value tasks.

“With the MiR500, we are very happy with the payload,” said Cabka project technician Craig Bossler. “It’s handled everything that we can stack on top of it. We haven’t found out how high we can go yet. It’s very stable — it can make turns, go straight, and it can hit bumps, and it’s always very stable. The MiR definitely can handle all the imperfections in the floor.”

MiR500

Production of MiR5000 autonomous mobile robots. The company says 40 percent of its sales has gone to the U.S. | Credit: Mobile Industrial Robots

Adding more MiR500 mobile robots

Cabka North America is looking at other ways to use the MiR robots, including prepping orders overnight in the warehouse so they will be ready at the dock for loading in the morning. Patrick Garin, president of Cabka North America, anticipates that other Cabka locations will be following the North American facility’s lead.

“We always have our corporate people come here – our corporate CEO and the other part of the team – and they will definitely be very interested in seeing our progress here,” he said.

Teradyne Inc. of North Reading, Mass., recently acquired Mobile Industrial Robots of Odense, Denmark. Three years ago, Teradyne also purchased another Danish automation company, collaborative robot maker Universal Robots.

The post MiR500 mobile robot helps Cabka automate pallet transport appeared first on The Robot Report.

Techmetics introduces robot fleet to U.S. hotels and hospitals

Fleets of autonomous mobile robots have been growing in warehouses and the service industry. Singapore-based Techmetics has entered the U.S. market with ambitions to supply multiple markets, which it already does overseas.

The company last month launched two new lines of autonomous mobile robots. The Techi Butler is designed to serve hotel guests or hospital patients by interacting with them via a touchscreen or smartphone. It can deliver packages, room-service orders, and linens and towels.

The Techi Cart is intended to serve back-of-house services such as laundry rooms, kitchens, and housekeeping departments.

“Techmetics serves 10 different applications, including manufacturing, casinos, and small and midsize businesses,” said Mathan Muthupillai, founder and CEO of Techmetics. “We’re starting with just two in the U.S. — hospitality and healthcare.”

Building a base

Muthupillai founded Techmetics in Singapore in 2012. “We spent the first three years on research and development,” he told The Robot Report. “By the end of 2014, we started sending out solutions.”

“The R&D team didn’t just start with product development,” recalled Muthupillai. “We started with finding clients first, identified their pain points and expectations, and got feedback on what they needed.”

“A lot of other companies make a robotic base, but then they have to build a payload solution,” he said. “We started with a good robot base that we found and added our body, software layer, and interfaces. We didn’t want to build autonomous navigation from scratch.”

“Now, we’re just getting components — lasers, sensors, motors — and building everything ourselves,” he explained. “The navigation and flow-management software are created in-house. We’ve created our own proprietary software.”

“We have a range of products, all of which use 2-D SLAM [simultaneous localization and mapping], autonomous navigation, and many safety sensors,” Muthupillai added. “They come with three lasers — two vertical and one horizontal for path planning. We’re working on a 3-D-based navigation solution.”

“Our robots are based on ROS [the Robot Operating System],” said Muthupillai. “We’ve created a unique solution that comes with third-party interfaces.”

Techmetics offers multiple robot models for different industries.

Source: Techmetics

Techmetics payloads vary

The payload capacity of Techmetics’ robots depends on the application and accessories and ranges from 250 to 550 lb. (120 to 250 kg).

“The payload and software are based on the behavior patterns in an industry,” said Muthupillai. “In manufacturing or warehousing, people are used to working around robots, but in the service sector, there are new people all the time. The robot must respond to them — they may stay in its path or try to stop it.”

“When we started this company, there were few mobile robots for the manufacturing industry. They looked industrial and had relatively few safety features because they weren’t near people,” he said. “We changed the form factor for hospitality to be good-looking and safer.”

“When we talk with hotels about the Butler robots, they needed something that could go to multiple rooms,” Muthupillai explained. “Usually, staffers take two to three items in a single trip, so if a robot went to only one room and then returned, that would be a waste of time. Our robots have three compartment levels based on this feedback.”

Elevators posed a challenge for the Techi Butler and Techi Cart — not just for interoperability, but also for human-machine interaction, he said.

“Again, people working with robots didn’t share elevators with robots, but in hospitals and hotels, the robot needs to complete its job alongside people,” Muthupillai said. “After three years, we’re still modifying or adding functionalities, and the robots can take an elevator or go across to different buildings.”

“We’re not currently focusing on the supply chain industry, but we will license and launch the base into the market so that third parties can create their own solutions,” he said.

Techmetics' Techi Cart transports linens

Techi Cart transports linens and towels in a hotel or hospital. Source: Techmetics

Differentiators for Techi Butler and Cart

“We provide 10 robot models for four industries — no single company is a competitor for all our markets,” said Muthupillai. “We have three key differentiators.”

“First, customers can engage one vendor for multiple needs, and all of our robots can interact with one another,” he said. “Second, we talk with our clients and are always open to customization — for example, about compartment size — that other’s can’t do.”

“Third, we work across industries and can share our advantages across them,” Muthupillai claimed. “Since we already work with the healthcare industry, we already comply with safety and other regulations.”

“In hospitals or hotels, it’s not just about delivering a product from one point to another,” he said. “We’re adding camera and voice-recognition capabilities. If a robot sees a person who’s lost, it can help them.”

Robotics Summit & Expo 2019 logoKeynotes | Speakers | Exhibitors | Register

Distribution and expansion

Techmetics’ mobile robots are manufactured in Thailand. According to Muthupillai, 80% of its robots are deployed in hotels and hospitals, and 20% are in manufacturing. The company already has distributors in Australia, Taiwan, and Thailand, and it is leveraging existing international clients for its expansion.

“We have many corporate clients in Singapore,” Muthupillai said. “The Las Vegas Sands Singapore has deployed 10 robots, and their headquarters in Las Vegas is considering deploying our products.”

“Also, U.K.-based Yotel has two hotels in Singapore, and its London branch is also interested,” he added. “The Miami Yotel is already using our robots, and soon they will be in San Francisco.”

Techmetics has three models for customers to choose from. The first is outright purchase, and the second is a two- or three-year lease. “The third model is innovative — they can try the robots from three to six months or one year and then buy,” Muthupillai said.

Muthupillai said he has moved to Techmetics’ branch office in the U.S. to manage its expansion. “We’ll be doing direct marketing in California, and we’re in the process of identifying partners, especially on the East Coast.”

“Only the theme, colors, or logos changed. No special modifications were necessary for the U.S. market,” he said. “We followed safety regulations overseas, but they were tied to U.S. regulations.”

“We will target the retail industry with a robot concierge, probably by the end of this year,” said Muthupillai. “We will eventually offer all 10 models in the U.S.”

Robotics cluster in Odense, Denmark, offers metrics for growth

Robotics cluster in Odense, Denmark, offers metrics for growth

What makes a robotics cluster successful? Proximity to university research and talent, government support of entrepreneurship, and a focus on industry end users are all important. Around the world, regions have proclaimed initiatives to become “the next Silicon Valley.” However, there have been relatively few metrics to describe robotics hubs — until now.

This week, Odense Robotics in Denmark released a report on the economic returns generated by its member companies. Both the amount of exports and the number of employees have increased by about 50 percent, according to Mikkel Christoffersen, business manager at Odense Robotics.

At the same time, the report is realistic about the ongoing challenges facing every robotics cluster, including finding qualified job candidates. As locales from India to Israel and Canada to China look to stimulate innovation, they should look at their own mixes of people, partnerships, and economic performance.

Membership and money

The Odense robotics cluster currently has 129 member companies and more than 10 research and educational institutions. That’s up from 85 in 2015 and comparable with Massachusetts, which is home to more than 150 robotics companies. The Massachusetts Robotics Cluster said it had 122 members as of 2016.

Silicon Valley Robotics says it has supported 325 robot startups, and “Roboburgh” in Pittsburgh includes more than 50 organizations..

In terms of economic performance, the Odense robotics cluster had 763 million euros ($866.3 million U.S.) in turnover, or revenue, in 2017. It expects another 20 percent increase by 2021.

Odense has been friendly to startups, with 64 founded since 2010. The Odense Robotics StartUp Hub has helped to launch 15 companies. Seventy companies, or 54 percent, of those in the Odense area have fewer than 10 employees.

Total investments in the Danish robotics cluster have risen from 322 million euros ($365.6 million) in 2015 to 750 million euros ($851.7 million) last year, with 42 percent coming from investors rather than public funding or loans.

Funding for companies in the Odense robotics cluster continues to rise.

Source: Odense Robotics

In addition, 71 local companies were robotics producers, up from 58 in 2017. The next largest category was integrators at 23. The region also boasted 509 million euros ($577.9 million) in exports in 2017, and 66 percent of its members expect to begin exports.

Market focus

The Odense Robotics report notes that a third of its member companies work with collaborative and mobile robots, representing its focus on manufacturing and supply chain customers. Those are both areas of especially rapid growth in the wider robotics ecosystem.

The global collaborative robotics market will experience a compound annual growth rate (CAGR) of 49.8 percent between 2016 and 2025, compared with a CAGR of 12.1 percent for industrial robots, predicts ABI Research. Demand from small and midsize enterprises will lead revenues to exceed $1.23 billion in 2025, said ABI.

Odense-based Universal Robots A/S is the global market leader in cobot arms. Odense-based gripper maker OnRobot A/S was formed last year by the merger of three companies, and it has since acquired Purple Robotics and raised hundreds of millions in additional funding.

OnRobot Grippers

OnRobot’s lineup of robotic grippers. Source: OnRobot

Similarly, the market for autonomous mobile robots will have a 24 percent CAGR between 2018 and 2022, according to a Technavio forecast. Odense-based Mobile Industrial Robots ApS (MiR) has tripled its sales in each of the past two years.

Both Universal Robots and MiR have broadened their international reach, thanks to ownership by Teradyne Inc. in North Reading, Mass.

Robotics cluster must address talent shortage

Odense Robotics said that its robotics cluster employs 3,600 people today and expects that figure to rise to 4,900 by next year. In comparison, the Massachusetts robotics cluster employed about 4,700 people in 2016.

Odense robotics cluster employee growth

The Danish robotics cluster is a significant employer. Source: Odense Robotics

Even as the numbers of people grow at larger robotics companies (with 50 or more employees) or abroad, businesses in southern Denmark have to look far afield to meet their staffing needs. More than a third, or 39 percent, said they expect to hire from outside of Denmark, and 78 percent said that finding qualified recruits is the biggest barrier to growth.

The average age of employees in the Odense robotics cluster reflects experience, as well as difficulty recruiting. Fifty-five percent of them are age 40 to 60, while only 18 percent are under 30.

This reflects a larger problem for robotics developers and vendors. Even with STEM (science, technology, engineering, and mathematics) programs and attention paid to education, the demand for hardware and software engineers worldwide outstrips the available pool.

The University of Southern Denmark (SDU) is working to address this. It has increased admissions for its bachelor’s degrees in engineering and science and master’s of science programs from 930 in 2015 to 1,235 last year. The university also launched a bachelor’s in engineering for robot systems, admitting 150 students since 2017.

Robotics cluster in Odense includes DTI

The Danish Technological Institute is expanding its facilities in Odense this year. Source: DTI

Another positive development that other robotics clusters can learn from Odense is that 41 percent of workers at robotics firms there went to vocational schools rather than universities.

Partnerships and prospects

Close collaboration with research institutions, fellow robotics cluster members, and international companies has helped the Odense hub grow. Seventy eight percent of cluster members collaborate among themselves, according to the report. Also, 38 percent collaborate with more than 10 companies.

The Odense robotics cluster grew out of a partnership between shipping giant Maersk A/S and SDU. The Maersk Mc-Kinney Moller Institute at SDU continues to conduct research into robotics, artificial intelligence, and systems for healthcare and the energy industry. It recently added aerial drones, soft robotics, and virtual reality to its portfolio.

Last year, the institute invested 13.4 million euros ($15.22 million) in an Industry 4.0 laboratory, and an SDU team won in the industrial robot category at the World Robot Summit Challenge in Japan.

Examples such as Universal Robots and MiR, as well as Denmark’s central position in Northern Europe, are encouraging companies to look for partners. Collaborating with companies inside and outside the Odense robotics cluster is a top priority of members, with 98 percent planning to make it a strategic focus in the next three years.

Of course, the big opportunity and competitive challenge is China, which is potentially a much bigger market than the U.S. or Europe and is trying to build up its own base of more than 800 robotics companies.

It’s only through collective action around robotics clusters that smart regions, large and small, can find their niches, build talent, and maximize the returns on their investments.

Editor’s note: A panel at the Robotics Summit & Expo in Boston on June 5 and 6, 2019, will feature speakers from different robotics clusters. Register now to attend.

The post Robotics cluster in Odense, Denmark, offers metrics for growth appeared first on The Robot Report.

Otto Omega self-driving forklift debuts at IMTS

Otto Motors, a division of Clearpath Robotics, introduced at IMTS its Otto Omega self-driving forklift. Otto Omega is designed to help those in materials handling reduce costs, increase throughput and improve safety in the warehouse. Otto Omega, according to Otto Motors co-founder and CEO Matt Rendall, can autonomously pick up and drop off skids, receive…

The post Otto Omega self-driving forklift debuts at IMTS appeared first on The Robot Report.

What’s all the fuss about AI, robotics and China?

In the constantly changing landscape of today’s global digital workspace, AI’s presence grows in almost every industry. Retail giants like Amazon and Alibaba are using algorithms written by machine learning software to add value to the customer experience. Machine learning is also prevalent in the new Service Robotics world as robots transition from blind, dumb…

The post What’s all the fuss about AI, robotics and China? appeared first on The Robot Report.

Chinese mobile robot maker Geek+ coming to America

Chinese artificial intelligence and robot maker Geek+ (Beijing Geekplus Technology) will be demonstrating its line of picking, moving and sortation robots April 9-12 in Atlanta, GA at MODEX, the largest supply-chain trade show in the Americas. Geek+ is a leading provider — and China’s #1 supplier — of warehousing and logistics solutions in China and…

The post Chinese mobile robot maker Geek+ coming to America appeared first on The Robot Report.

Quiet inroads in robotics: the Vecna story

Robotics is undergoing fundamental change in three core areas: collaboration, autonomous mobility and increasing intelligence. Autonomous mobility technology is entering the industrial vehicle marketplace of AGVs, forklifts and tugs with new products, better navigation technologies and lower costs. Forecasters Grandview Research and IDTechEx suggest that autonomous forklifts and tugs will emerge as the standard from…

The post Quiet inroads in robotics: the Vecna story appeared first on The Robot Report.