If you've ever played soccer with a robot, it's a familiar feeling. Sun glistens down on your face as the smell of grass permeates the air. You look around. A four-legged robot is hustling toward you, dribbling with determination.
Force-sensitive, dynamic, energy efficient and with a range of applications—these qualities are what distinguish the new robot gripper created by the Fraunhofer Institute for Mechatronic Systems Design IEM. It can transport fragile objects from one production step to the next without damaging them.
Roboticists have been using a technique similar to the ancient art of paper folding to develop autonomous machines out of thin, flexible sheets. These lightweight robots are simpler and cheaper to make and more compact for easier storage and transport.
Artificial muscles and nerves made from the shape memory alloy nickel-titanium are making robot arms as supple and agile as their animal counterparts. But these artificial limbs also weigh less, will work tirelessly and can be precisely controlled. The bionic robot arms that are being developed by Professor Stefan Seelecke's research team at Saarland University in collaboration with the German automation specialist Festo consume very little electric power and can work safely with humans. The research team will be presenting the technology at this year's Hannover Messe from 17 to 21 April (Hall 002, Stand B34).